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Abstract 

Coordination sequences (CS) have been calculated for all 
approved zeolite topologies, all dense SiO 2 polymorphs 
and 16 selected non-tetrahedral structures and the al- 
gebraic structure of these CS's has been analyzed. Two 
algebraic descriptions of coordination sequences are pre- 
sented. One description uses periodic sets of quadratic 
equations and is already established in the literature. The 
second description employs generating functions, which 
are well known in combinatorics but are used here for the 
first time in connection with coordination sequences. The 
algebraic analysis based on generating functions turns 
out to be more powerful than the other approach. Based 
on the algebraic analyses, exact topological densities are 
derived and tabulated for all the structures investigated. 
In addition, 'n-dimensional sodalite' is observed to have 
an especially simple n-dimensional graph. 

1. Introduction 

The notion of coordination sequence (CS) was formally 
introduced by Brunner & Laves (1971) in order to 
investigate the topological identity of frameworks and 
of atomic positions within a framework. The CS is a 
number sequence in which the kth term is the number 
of atoms in 'shell' k that are bonded to atoms in 'shell' 
k - 1. Shell 0 consists of a single atom and the number 
of atoms in the first shell is the conventional coordination 
number. 

The CS is now routinely used to characterize crys- 
tallographic structures (Meier & M6ck, 1979; Atlas of 
Zeolite Structure Types, 1992, 1996; Fischer, 1973, 1974) 
and even higher-dimensional sphere packings (Conway 
& Sloane, 1995, 1996). Other applications are to the 
determination of topological density, which can be ob- 
tained from the partial sums of terms in the CS. This 
density is correlated with other parameters such as 
lattice energy (Akporiaye & Price, 1989), the distribution 
of particular elements (Herrero, 1993) and catalytic 
activity (Barthomeuf, 1993), and is useful for predicting 
properties of synthetic zeolites (Brunner, 1979). 
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In an abstract sense, the CS describes the growth of 
a crystal and was therefore initially called the 'growth 
series' (Brunner & Laves, 1971). Previous investiga- 
tions (Brunner, 1979; Herrero, 1994; Schumacher, 1994; 
O'Keeffe, 1991a) have shown that in some cases the 
terms in the CS increase quadratically with k but up 
to now investigations have been restricted to specific 
examples. In view of the increasing applications of 
the CS, up to 2000 terms have now been calculated 
for all approved zeolite topologies as well as for all 
dense SiO 2 polymorphs and 16 selected non-tetrahedral 
structures, and the algebraic structure of these CS's has 
been analyzed. 

2. The crystal structures investigated 

The majority of the zeolite structures investigated in 
this work are listed in the Atlas of Zeolite Structure 
Types (1992, 1996).~t All the zeolite topologies will 
be referred to by their three-letter codes. For example, 
melanophlogite has code MEP. Coordination sequences 
for structures with more than one crystallographic site 
are referred to by the three-letter code followed by the 
site label of the Atlas. For example, the zeolite mazzite 
has two distinct sites (both tetrahedrally coordinated 
atoms), which are denoted by MAZ T1 and MAZ T2. 

The data for the 12 SiO 2 polymorphs were taken from 
the Inorganic Crystal Structure Database (1986-1995). 
Table 1 lists the mineral names together with the ICSD 
collection codes. 

For a comparison, 16 non-tetrahedral structure types 
having many chemical representatives have also been 
investigated. Table 2 gives the search codes for the cor- 
responding entries in the Gmelin Handbook of Inorganic 
and Organ©metallic Chemistry (TYPIX, 1994). 

The coordination numbers of the zeolites and the 
dense SiO 2 polymorphs are always 4, with the exception 
of the six interrupted zeolite frameworks (indicated by a 
dash preceding the three-letter code), which have a three- 
or twofold coordination for one of the sites. For the non- 
tetrahedral structures, Table 2 also gives the bond-length 

I: The Atlas of Zeolite Structure Types is available on the World Wide 
Web at http://www.iza-sc.ethz.ch/IZA-SC/. 
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Table 1. ICSD collection codes 

Mineral ICSD collection code 

Banalsite 4447 
Coesite 18112 
Cordierite 30947 
Cristobalite 9327 
Feldspar 100182 
Keatite 34889 
Milarite 71046 
Moganite 67669 
Paracelsian 24690 
Quartz 31048 
Scapolite 9502 
Tridymite 29343 

Table 2. TYP/X search codes 

TYPIX Bond length Coordination 
Formula search code limit (A) numbers 

CaF 2 (2) (225) oF12 2.5 4, 8 
CaF 2 (1) (225) oF12 3.5 8, 10 
NaCI (225) oF8 3.0 6 
FeS2-marcasite (58) oP6 2.7 4, 6 
FeSz-pyrite (205) cP12 2.7 4, 6 
NiAs (2) (194) hP4 2.5 6, 6 
NiAs (1) (194) hP4 2.7 6, 8 
Cu (225) oF4 2.7 12 
Mg (194) hP2 3.5 12 
W (2) (229) cI2 3.3 14 
W (1) (229) cI2 2.8 8 
ct-Nd (194) hP4 4.0 12 
Ni2In (194) hP6 3.3 11, 14 
ct-Mn (217) ci58 3.5 12, 13, 16 
Cr3Si (223) cP8 3.5 12, 14 
~-CrFe (136) tP30 3.5 12, 14, 15 
MgZn 2 (194) hP12 3.5 12, 16 
MgC-'u 2 (227) cF24 3.5 12, 16 
MgNi2 (194) hP24 3.5 12, 16 

limits and the resulting coordination numbers that were 
used in the calcnlations~ For each of CaF 2, NiAs and 
W, two different parameters were considered, leading to 
two different coordination numbers. 

3. Primary determination of coordination sequence: 
a highly optimized node-counting algorithm 

In order to calculate the coordination sequence, the 
crystal structure, i.e. assembly of atoms, has to be 
abstracted to a mathematical topology (or graph) with 
nodes and certain bonds between nodes. In the case of 
zeolites and dense SiO 2 phases, the tetrahedral positions 
are taken to be the nodes, and the bridging framework 
of O atoms is replaced by bonds. For other classes of 
materials, e.g. metals or intermetallic phases, all atoms 
represent nodes, and bonds are created in an appropriate 
neighborhood of each atom (see, for example, Brunner 
& Laves, 1971). 

The CS determination algorithm used here can be 
described as a node-counting or coordination-shell algo- 
rithm. The algorithm is started (with k = 0) by selecting 
an initial node. At the next step (k = 1), all nodes 

bonded to the initial node are determined. For k >_ 2, all 
characteristics of the algorithm become evident: those 
nodes that are bonded to the 'new nodes of the previous 
step (k - 1)' but have not been counted before are 
counted. This means that three sets of nodes for three 
topological distances (i.e. three coordination shells) have 
to be maintained: the middle (k - 1) nodes, whose bonds 
are followed to determine the next (k) nodes, and the 
previous (k - 2) nodes, to know which of the nodes 
bonded to the middle nodes have already been counted. 
The innermost shells with k < knext - 2 are not needed 
and can be deleted since the nodes counted before are 
fully surrounded by shell k - 2. In this way, the memory 
required grows only quadratically with k, whereas other 
algorithms presented in the literature (Herrero, 1994) 
have a cubic growth rate. 

Another important feature of the algorithm is that 
a 'hashing' look-up technique was used to determine 
whether a newly generated node - a candidate for the 
next shell - was already in the middle or previous shell. 
This increased the speed of the program by about three 
orders of magnitude. 

Optimizations with respect to both memory and speed 
were necessary: without them, it would not have been 
possible to compute the several hundred to several 
thousand CS terms that were required for the analysis. 
Computing times were a matter of hours on a high-speed 
workstation. 

4. Algebraic description I: quadratic 
equations defining the topological density 

It has already been shown in the literature (Bnmner, 
1979; Herrero, 1994; Schumacher, 1994; O'Keeffe, 
1991a) that in many cases the kth term of the 
coordination sequence, N k, increases quadratically with 
k (just as the surface of a sphere increases quadratically 
with its radius). A very simple example is SOD, where 
N k = 2k 2 + 2 holds for all k. Brunner (1979) gives a 
more typical example: for diamond, 'the equation N k = 
2.5k 2 + 1.75 renders values too high by 0.25 if k is odd 
and too low by 0.25 if k is even'. An exact description 
for all k is achieved by introducing a periodic set of 
quadratic equations: 

N k = (5/2)k 2 + 3/2 

= (5/2)k2 + 2 

~ r k = 2 n + l ,  

n = 0 , 1 , 2  . . . .  

~ r k = 2 n + 2 ,  

n = 0 , 1 , 2  . . . . .  

For ABW, the equations involve both k 2 and k: 

N k = (19/9)k 2 + (1/9)k + 16/9 

N, = (19/9)k 2 - (1/9)k + 16/9 

~ r k = 3 n + l ,  

n = 0 , 1 , 2  . . . .  

~ r k = 3 n + 2 ,  

n = 0 , 1 , 2 , . . .  
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Nk = (19/9)kZ - Ok + 2 for k = 3n 4- 3, 

n = 0, 1,2, . . . .  

In general, all coordination sequences investigated in 
this study can be described exactly by a periodic set of 
quadratic equations of the form 

N k : ai k2 W b i k  W C i for k = Mn + i, (1) 
f o r n = 0 , 1 , 2 , . . ,  and i = 1 , 2 , . . . , M .  

The number of equations, M, will be referred to as 
the period length. These equations hold for all k greater 
than or equal to some starting point k 0. 

Following a definition of O' Keeffe (1991 a), we define 
the 'exact topological density' (TD) to be the mean of 
the  a i divided by the dimension N o of the crystal space 
(which is 3 for all results presented here): 

M 
TD = ( a l ) / N  D = (1 /MND) E ai. 

i=l 

As k increases, the effect of the linear and constant 
coefficients b i and c i on the CS decreases and the 
quadratic coefficient a~ dominates. The error in the 
approximation 

N k '~ NDTDk  2 (3) 

vanishes for k --o cx~. 

5. Algebraic description H: generating functions 

The generating function (GF) for a coordination se- 
quence (cf Sloane & Plouffe, 1995), 

O O  

OF= ESkx 
k=0 

often provides a more concise description than the 
quadratic equations given in (1). The generating func- 
tions for the sequences considered in this study have the 
form 

First, the GF's for some simple zeolites were obtained 
by using the Maple G F U N  package (Waterloo Maple 
Software, 1994; Salvy & Zimmermann, 1994). However, 
more complex cases were beyond the capabilities of 
G F U N  and an alternative approach was used. Note that 
the Taylor-series expansion of a generating function of 
the form (5) can be obtained by the simple recursive 
reconstruction algorithm shown in Fig. 1. This produces 
the coordination sequence from the sets I T  and PL. 

Conversely, given the set PL and a sufficient number 
of CS terms, the set I T  can be obtained by multiplying 
the GF by the denominator of (5). This is accomplished 
by the recursive decomposition algorithm shown in Fig. 
2. 

6. Properties (P) and manipulations (M) 
of generating functions and 

connection with quadratic equations 
(2) (P1) The individual members of the set PL can be 

arranged in any order. This follows immediately from 
(5). On the other hand, the order of the elements of the 
set I T  is important. 

(P2) Extra period lengths can be adjoined to the set 
PL at the cost of enlarging the set IT. This corresponds 
to multiplying both the numerator and denominator of 
(5) by factors 1 - x ~. 

(P3) In some cases, it is possible to reduce the set 
PL by cancellation of factors. APD T1 gives a simple 
example: with PL = {21,11,8}, the set IT  has 43 
elements. However, with PL = { 11, 8, 7, 3 }, the set I T  
has 32 elements. No further simplification is possible. 

(M1) Reduction of set /T with enlargement of set 
PL: Starting with initial sets 1T/PL,  two 'compact' sets 
t T c / P L  c are obtained with the algorithm shown in Fig. 

(4) 3, which is based on properties (P2) and (P3). This 
algorithm results in a set PLc, of which no element 
can be omitted or further factorized. (However, this 
algorithm does not always produce the 'most compact' 
GF.) 

o(rr)-i /o ( r r ) - i  
GF= ;=0E IT(i)xi/ i =o (1--xPL(i)), (5) 

where IT  is a set of order O(IT) 'initial terms' and PL is a 
set of (not necessarily distinct) O(PL) 'period lengths'. 
The coefficients of the Taylor-series expansion of the 
generating function then give the CS. For example, the 
GF for ABW is 

Copy initial terms to N0...No(IT)_ 1 

Set No(iT)...Nk.ma x = 0 
For each i = 0 to O(PL)-I 

For each k = PL(i) to kma x 

Fig. 1. Recursive reconstruction algorithm. 

GF(ABW) = (1 + 3x + 6x 2 + 9x 3 + 9x 4 + 6x 5 + 3x 6 

+ xT)/[(1 - x3)(1 - x3)(1 - x)] 

= l + 4 x + 1 0 x  2 + 2 1 x  3 + 3 6 x  4 

+ 54x ~ + . . . .  

Copy the CS terms to N0...Nk_ma x 

For each i = 0...O(PL)-I 

For each k = kmax-l...PL(i ) step -i 

N k = N k - Nk_PL(i ) 

Fig. 2. Recursive decomposition algorithm. 
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For IT~/PL~, the following relations hold for all CS's 
investigated: 

(P4) Let /T c and PL c be the sets obtained with 
manipulation technique (M1). The starting point for the 
periodic set of quadratic equations can be taken to be 
the difference between the degrees of the numerator and 
denominator of (5) or, in other words, 

O(PLr)--I 
k o = O(ITc) - ~ PLc(i ). (6) 

i=0  

(P5) Let/T¢ and PL c be the sets obtained with ma- 
nipulation technique (M1). The least common multiple 
(LCM) of the dements of the set PL c equals the period 
length of the set of quadratic equations: 

M = LCM (PL c). 

For example, for EUO T9, we have 

O(ITc) = 222 

PL c = {36, 26, 24, 23, 22, 21, 17, 14, 10, 8, 5} 

:=> k 0 = 222 - 206 = 16 

M = 140 900 760. 

(M2) Reversal of (M1). Reduction of set PL with 
enlargement of set /T:  The number of elements of an 
initial set PL can be reduced with the algorithm shown 

in Fig. 4. Using this algorithm, it was possible to modify 
the generating functions for all the CS's investigated 
so that in every case exactly three PL elements were 
required. 

(M3) Finding upper bounds on the subperiod 
lengths of the coefficients ai, bi, c i of the set of 
quadratic equations: Upper bounds on the subperiod 
lengths of the coefficients a i, b i, c i can be established 
with a very simple algorithm. Based on 1Tc/PL c, 
about 3LCM(PLc) CS terms are computed. Next, the 
recursive decomposition algorithm is applied with PL 
= {LCM(PLc), LCM(PLc) }. With a linear period search 
in the resulting sequence, an upper bound pl a on the 
subperiod length O(ai) is obtained. The process is 
repeated with PL = {LCM(PL¢),PIa} to obtain pl b, 
and finally with PL = {Pla,Plb} tO obtain pl c. 

For all sequences except those of GOO T3, JBW T1 
and T2, TON T1 and T2, the Fe position of FeS 2- 
marcasite, and both position of CaF2(2), the bounds Pla, 
pl  b and pl¢ are exactly equal to the subperiod lengths 
O(ai), O(bi) and O(ci), respectively. For the exceptional 
cases (and of course also in general), the relations 
pl a > O(ai), pl  b > O(bi) and pl  c > O(ci) hold. Moreover, 
for all CS's, the relation pl a < pl  b < plc holds, and 
O(ai) < O(bi) < O(ci) is valid for all CSs except those 
of GOO T3, JBW T1 and T2, the Fe position of FeS 2- 
marcasite, and both positions of CaF2(2). 

By application of the manipulation techniques (M2) 
and (M3), it was always possible to obtain O(PL) -- 3 for 

(a) 

(b) 

Test if any element of PL can be omitted, by seeing if the 
corresponding term 1-x n divides the numerator of (5). 

If so, remove the element. 
Loop through the elements of PL. 
Call the current element the pivot element. 

Loop through all integer divisors of the pivot element 
Copy PL and divide the pivot element by the divisor 
Compute a large number of CS terms from the initial IT/PL 
Apply the recursive decomposition algorithm and do a 

linear period search to recover a potentiallymissing 
last period length 

Upon successful period search, restart with step (a) 

Fig. 3. Reduction of set/T with enlargement of set PL. 

(a) Test if any element of PL can be omitted. 
If so, remove the element. 

(b) Loop through all pairs of elements of PL 
Copy PL, omitting the current pair of elements 
Compute a large number of CS terms from the initial IT/PL 
Apply the RD algorithm and do a linear period search to 

recover a potentially missing last period length 
Upon successful period search, restart with step (b) 

(c) Repeat (a) and (b} until no change occurs 

Fig. 4. Reduction of set PL with enlargement of set IT. 
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all 390 three-dimensional CS's that were investigated. It 
is conjectured that this holds for any three-dimensional 
CS. 

In simple cases, such as the f.c.c, or b.c.c, lattices, 
the elements of the set IT  are positive integers. Indeed, 
it follows from the work of Stanley (1976, 1980) that 
if certain conditions are satisfied (one of which is that 
the set of points in or on the kth coordination shell 
is convex), then the IT  are necessarily positive. In the 
present investigation, however, many examples with 
negative IT  elements were encountered. For example, the 
As position of NiAs(1) has IT  = {1,4, 12, 10 , -5 ,2} ,  
PL = (2,1,1) .  

6.1. Application o f  (M2) and (M3) 

Since the computation of the CS terms with the 
recursive reconstruction algorithm requires the whole 
sequence to be-held in memory, major difficulties arise 
for large period lengths. For example, the determination 
of the topological density for EUO requires about 3M = 
422 702 280 64-bit integers to be stored, a total of about 
3.15 Gbytes. However, for the case O(PL) = 3, a special- 
purpose algorithm for computing the CS terms with 
small memory was devised. This algorithm is several 
orders of magnitude slower than the simpler recursive 
reconstruction algorithm, but - in combination with the 
manipulation techniques (M2) and (M3) - enabled the 
determination of the topological density even for the 
largest cases. 

7. Second differences of CS's 

The second derivative of a quadratic polynomial is a 
constant. By analogy, the second differences between 
successive terms of the CS in a number of examples 
are constant, or have a constant period. For example, 
the CS of the SiO 2 polymorph tridymite (tri) and the 
corresponding first (F k = NI, - Nk_ 1) and second (S k - 
Fk -- Fk-  1) differences are 

CS(tri) -- {4, 12, 25, 44, 67, 96, 130, 170, 214, 264, 

319, 380, 445, 516, . . .}  

diffl [CS(tfi)] = {8, 13, 19,23,29,34, 40, 44,50,55, 61, 

65,71 . . . .  } 

diff2[CS(tri)] = {(5,6,4,6),  (5,6,4,6),  (5,6,4,6) . . . .  }. 

The period length of the second differences is four, 
as indicated by the parentheses. [Although it is not 
needed here, it is worth mentioning that Herschel's 
'circulator' notation provides a convenient terminology 
for describing such periodic sequences (Comtet, 1974, 
p. 109).] 

The occurrence of a constant period in the second 
differences implies b i = 0 for the entire (periodic) set of 

quadratic equations. For example, for ABW, some b i are 
different from zero (see above) and the numerical values 
of the second differences are not constant. However, 
their plot (Fig. 5) clearly reveals a periodicity that can 
be used to estimate one period length for the recursive 
decomposition. In this case, the period length is 3. An d , 
indeed, the set of period lengths for ABW is { 3, 3, 1 }. 

8. Strategy for the determination 
of the exact topological density 

Typically, the determination of the exact topological 
density (TD) requires the following steps: 

(i) Computation from 100 to 2000 terms of the CS 
with the node-counting algorithm. 

(ii) Investigation of the second differences; often this 
reveals one 'period length' for the recursive decompo- 
sition. 

(iii) Determination of the period lengths for the re- 
cursive decomposition. 

(iv) Alternative 1: Computation of a few million 
terms of the CS, search for a periodic set of quadratic 
equations, and computation of TD from (2). Alternative 
2: Computation of k o via (6), M = LCM(PLc)  and 
the corresponding 30(ai)  CS terms; computation of one 
subperiod of ai; computation of TD from (2). 

All but step (iii) have been outlined above. For the 
determination of the period lengths for the recursive 
decomposition, two techniques have been applied: 

(a) A set of n maximum period lengths PLma x = 
{pl(O)max,PI(1)max,..., pl(n - 1)max} is prescribed and 
the first position is tested from 1 to  p l (0)max.  At each pass 
of the loop, the recursive decomposition algorithm is 
applied to the CS, followed by a check for a sufficiently 
large sequence of zeros at the end of the resulting 
sequence. Also, a linear period-seeking algorithm tries 
to recover a possibly last missing period length. In the 

40 

2O 

| 
"ID 

-20 

"400 20 40 ~ 80 100 

Topological distance k 

Fig. 5. Second differences of ABW. 
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case of no success, pl(1) is also tested and a loop with 
two variables, but avoiding permutations, is executed. 
Unless a solution has been found, more and more loop 
positions are activated until the entire set is depleted. 

(b) A review of several known PL sets revealed 
that individual pl often occur in pairs. This observation 
and the exploitation of properties (P1) and (P2) led 
to the. following strategy: given a large number of CS 
terms, attempt to obtain a decomposition using PL = 
{ m , m , m -  1, m - 1 . . . . .  2 ,2 ,1 ,1} .  

Upon success, the initial set PL is subjected to ma- 
nipulation technique (M1), in order to obtain ITc and 
PLy, the compact form of description of the particular 
CS. 

8.1. Example with decomposition technique (a) 

For EUOT9, 1460 CS terms were calculated with 
the node-counting algorithm. Investigation of the sec- 
ond differences suggested a pl of 15, which was then 
applied to the CS. The resulting sequence was processed 
with PLma x = {400, 300, 200, 100, 40, 40, 40} (of course, 
there was no hope that this loop would ever run to com- 
pletion). At loop position PL = {391,286, 40}, the linear 
period-seeking algorithm found a period with length 504. 
Using the combined set PL = {504,391,286,40, 15}, 
the size of the set IT is 1252. By means of the ma- 
nipulation technique (M1), the final solution PLc = 
{36,26, 24, 23, 22, 21, 17, 14, 10, 8, 5} was obtained, to- 
gether with 2 2 2 / T  C elements. 

8.2. Example with decomposition technique (b) 

For MAZT2,  999 CS terms were calculated 
with the node counting algorithm. Setting PL -- 
{15,15, 14, 14 . . . . .  1, 1} revealed a solution with 241 
IT elements. By means of manipulation technique (M1), 
the final solution PL c = {14,11,10,8 ,7}  with 51 /T C 
elements was obtained. 

9. Results of the algebraic analysis 

For 127 crystal structures, 402 coordination sequences 
were investigated, of which 390 are unique. For the 
zeolite structures, there are eight sequences that occur in 
two or more crystallographically different environments: 
ABW = ATN; LTA = RHO; CAN = AFG T2 : AFG T3 
= LIOT2 = LIOT4 = LOS T2; GME = AFXT1;  AFS 
T3 = BPHT3;  EDIT1 = THOT1;  ERIT1 = OFFT1;  
EAB T2 = OFF T2. Furthermore, the CS of one atom 
of c~-Nd (the position at the origin) is equal to the CS 
of Mg, and one CS of NiAs(1) (again for the position at 

~the origin) is equal to the CS of W(1). 
Tables 3-5 list the results of the algebraic analysis. 

Column S gives the number of different CS's for the 
structure indicated in the first column. Except for AFG 
and LIO, which have two different sites with the same 

CS, this is also the number of crystallographically dis- 
tinct positions. O(IT) and O(PL) designate the order of 
the set of initial terms and period lengths, respectively. 
For structures with more than one topologically distinct 
site, the range is given (e.g. EUO: 213-233 initial 
terms). However, i f  there are only two values, these are 
separated by a comma instead of a hyphen [e.g., for 
EUO, O(PL) is either 10 or 11 for all ten sequences], 
and in some cases all sets have an equal number of 
members and only one value is necessary. M is the 
number of quadratic equations that make up the periodic 
set. TD, the exact topological density defined by (2), is 
given exactly, as a rational fraction multiplied by N O = 
3 (TDN o = (ai)) and, for better comparability, also as 
decimal number. TD10 and A (%) are defined by (7) 
and (8) below. 

All the coordination sequences in this study have 
been added to the electronically accessible ver- 
sion of Sloane & Plouffe (1995) at the address 
sequences@research.att.com (Sloane, 1994). In this 
way, the CS can be used as a 'fingerprint' to assist 
in the identification of a crystal structure. 

10. Properties of the coefficients 
of the quadratic equations 

For most of the zeolites with only one or two tetrahedral 
sites, and for the dense SiO 2 polymorphs, the structure 
of the coefficients of the quadratic equations was inves- 
tigated. These structures all share one or more of the 
following characteristics: the parameter a is the same 
for all terms or shows a shorter period than b and c; the 
parameter b is zero or shows a shorter period than c; 
different periods appear for odd and even values of i; 
some or all parameters are 'palindromic'.  The following 
are some typical examples. The most 'special' example 
is SOD. The CS is N k -- 2k 2 + 2: 4, 10, 18, 34 . . . . .  thus, 
a = 2, b = 0, c = 2; the period M is 1. This type of 
equation also occurs for the structures of NaC1, W and 
Cu (P, I and F lattice complexes) with a = 4, 6 and 
10, respectively. 

A somewhat less special example is AFI. The param- 
eters are a - 21/10, b = 0 for all values of k and M = 
10. The parameter c is palindromic about k = M/2 = 
5. This means that c is the same for k = 1 and k = 9; 
it is also the same for the pairs 2 and 8, 3 and 7, and 
4 and 6, respectively. For k = 10, the parameter c is 2. 
Such palindromic behavior about k = M/2 is frequently 
observed. An example in which M is odd is KFI with 
a = 12/7, b = 0 for all k, M = 7, where c is palindromic 
about k = 3.5 (thus, c is the same for the pairs k = 1 
and 6, 2 and 5, and 3 and 4, respectively). For the last 
term of the period (k = 7), c is again 2. Another kind 
of palindromic behavior may appear if  b is not zero: the 
magnitudes of b and of c are the same for pairs of k as 
in the previous examples but the signs of b may differ 
for the two members of a pair. An example is CAN. 
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Tab le  3. Results for topologies listed in the Atlas of Zeolite Structure Types (1992, 1996) 

Code 

ABW 
AEI 
AEL 
AET 
AFG 
AFI 
AFO 
AFR 
AFS 
AFT 
AFX 
AFY 
AHT 
ANA 
APC 
APD 
AST 
ATN 
ATO 
ATS 
A'VI" 
ATV 
AWW 
*BEA 
BIK 
BOG 
BPH 
BRE 
CAN 
CAS 
CHA 
-CHI 
-CLO 
CON 
DAC 
DDR 
DFO 
DOH 
EAB 
EDI 
EMT 
EPI 
ERI 
EUO 
FAU 
FER 
GIS 
GME 
GOO 
HEU 
JBW 
KFI 
LAU 
LEV 
LIO 
LOS 
LOV 
LTA 
LTL 
LTN 
MAZ 
MEI 
MEL 
MEP 
MER 
MFI 

S 

1 
3 
3 
5 

2(3) 
1 
4 
4 
3 
3 
2 
2 
2 
1 
2 
2 
2 
1 
1 
3 
2 
2 
2 
9 
2 
6 
3 
4 
1 
3 
1 
4 
5 
7 
4 
7 
6 
4 
2 
2 
4 
3 
2 
10 
1 
4 
1 
1 
5 
5 
2 
1 
3 
2 

3(4) 
2 
3 
1 
2 
4 
2 
4 
7 
3 
1 

12 

0(II) O(PL) M TDfrac. x 3 = ( a i )  TDdec. TD10 

8 3 3 19/9 0.703704 833.0 
36, 45 4 1320, 2640 2309/1320 0.583081 688.7 
29, 33 3 36, 72 497/216 0.766975 903.8 
47-72 3, 4 168, 336 67/32 0.697917 824.1 
12, 27 3 5, 20 52/25 0.693333 815.5 

13 3 10 21/10 0.7 828.0 
35, 49 3, 4 48 665/288 0.769676 907.4 
62, 85 5, 6 31395, 1 2 5 5 8 0  163664/94185 0.579229 686.7 
39, 52 4, 5 120, 240 273/160 0.56875 655.7 

31 3 420 123/70 0.585714 684.7 
17, 24 3 140 123/70 0.585714 688.5 
19, 20 3, 4 60 22/15 0.488889 585.2 
11, 23 3 8 35/16 0.729167 853.3 

17 3 40 12/5 0.8 933.0 
16, 31 3 45, 360 94/45 0.696296 814.0 
22, 32 3, 4 231, 1848 526/231 0.759019 887.5 

16 4 12 15/8 0.625 742.2 
8 3 3 19/9 0.703704 833.0 
12 3 5 57/25 0.76 894.0 

14-19 3 15, 30 48/25 0.64 752.3 
23 4 420 68/35 0.647619 767.7 
20 3 40 49/20 0.816667 960.3 

18, 29 3 63, 504 124/63 0.656085 772.3 
236-257 11, 12 742560 81978419/38785500 0.704545 805.1 

19, 20 5 12 49/18 0.907407 1052.3 
81-94 7 1 6 7 2 0  113787/57475 0.659922 780.8 
39,44 4, 5 120 273/160 0.56875 667.3 
64, 67 6 2340 12289/5265 0.778031 900.5 

12 3 5 52/25 0.693333 817.0 
33,40 5, 6 120 7741/2880 0.895949 1042.3 

11 3 20 17/10 0.566667 677.0 
103-112 8 198968, 397936 153225069/61282144 0.833441 913.3 
62, 68 4 18480 512/385- 0.44329 455.5 
96-101 7, 8 1 0 2 9 6 0  3105307/1544400 0.670229 784.0 
62-65 10 9240 4896737/1940400 0.84119 977.3 

120-129 9 55440 39307/15400 0.850801 967.9 
79-100 4 53010 15268/8835 0.576042 663.6 
85-94 6 1 2 0 1 2 0  145707/55055 0.882191 1001.9 
19, 25 3 210, 420 66/35 0.628571 735.0 
9, 11 3 12 2 0.666667 786.2 

66, 75 4, 5 3360 2071/1400 0.493095 584.0 
44 8 420 89441/35280 0.845059 978.7 

19, 25 3 210, 420 66/35 0.628571 738.3 
213-233 10, 11 1 4 0 9 0 0 7 6 0  395365279/150965100 0.872973 964.9 

15 3 42 10/7 0.47619 579.0 
47-62 6, 7 420, 840 55921/21000 0.887635 1021.4 

9 3 12 11/6 0.611111 726.0 
17 3 140 123/70 0.585714 694.0 

31-40 5 420 2032/945 0.716755 840.2 
28-40 5 420 4903/2100 0.778254 908.6 

19 4 20 113/50 0.753333 890.3 
10 3 7 12/7 0.571429 681.0 

26, 28 4 1260 622/315 0.658201 782.0 
24 4 210 318/175 0.605714 719.0 

12, 22 3 5, 15 52/25 0.693333 815.7 
12, 17 3 5, 10 52/25 0.693333 816.0 
45-54 7 660 34233/15125 0.754446 879.2 

8 3 5 8/5 0.533333 641.0 
25 3 504 13/7 0.619048 746.0 

139-177 5 251940, 503880 3384/1615 0.698452 779.2 
51, 53 5 3080 11271/5390 0.697032 823.0 

110, 121 7, 8 5419260 301573/159390 0.630682 727.9 
74-80 7 80080 121417/50050 0.808638 944.1 
88, 91 7 3527160 421222/146965 0.955379 1058.8 

10 3 15 28/15 0.622222 738.0 
185-235 7, 8 62622560 96965483/39139100 0.825819 959.9 

za (%) 

2.36 
2.11 
1.91 
2.11 
1.71 
2.29 
1.96 
2.49 
0.34 
1.06 
1.63 
3.46 
1.20 
0.87 
1.09 
1.12 
2.68 
2.36 
1.73 
1.64 
2.50 
1.70 
1.78 
1.19 
0.31 
2.31 
1.43 
0.10 
1.90 
0.63 
3.28 
5.23 

11.23 
1.15 
0.49 
1.61 
0.41 
1.77 
1.10 
1.97 
2.37 
0.17 
1.56 
4.40 
5.09 
0.47 
2.72 
2.44 
1.37 
0.97 
2.21 
3.03 
2.73 
2.63 
1.74 
1.77 
0.78 
3.90 
4.20 
3.53 
2.10 
0.21 
0.98 
4.14 
2.55 
0.53 
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Tab le  3 (cont.) 

Code S O(IT) O(PL) M TD frac. x3 = (ai) TD dec. TD10 A (%) 

MFS 8 51-76 7, 8 420, 840 127349/49000 0.86632 994.8 0.68 
MOlq 1 26 5 12 187/108 0.885802 1033.0 0.87 
MOR 4 93-95 8 32760 298988/124215 0.80234 938.3 1.14 
MTN 3 58, 60 6 1560 4522/1625 0.92759 1049.1 2.17 
MTr 7 118-135 9 1 3 8 6 0  17672791/6670125 0.883181 1015.0 0.60 
MTW 7 77-86 8, 9 1 3 8 6 0  3194357/1372140 0.776004 911.7 1.61 
NAT 2 27, 29 3, 4 24 20/9 0.740741 834.2 2.61 
NES 7 104-124 7 1 5 9 3 9 0  352325/143451 0.818688 922.1 2.59 
NON 5 85-98 8 32760, 65520 321277/117000 0.915319 1037.5 1.96 
OFF 2 19 3 210 66/35 0.628571 739.0 1.65 
-PAR 4 49-58 7, 8 6930, 1 3 8 6 0  518384/259875 0.664915 773.2 0.55 
PAId 8 29--44 3 77, 154 144/77 0.623377 728.1 0.99 
PHI 2 23, 28 4 60 143/75 0.635556 750.5 2.10 
RHO 1 8 3 5 8/5 0.533333 641.0 3.90 
-ROGt 3 46, 55 5, 6 240 1063/600 0.590556 690.0 1.01 
-RON 4 54, 63 6 240 7441/3600 0.688981 771.1 3.23 
RSN 5 83, 90 9 8580 5570407/2359500 0.786947 913.6 0.40 
RTE 3 20, 23 4 420 451/210 0.715873 844.3 1.99 
RTH 4 53, 61 7, 8 8190, 1 6 3 8 0  384632/184275 0.695757 816.7 1.51 
RUT 5 74--80 8, 9 4680 1293083/561600 0.767499 902.1 1.65 
SGT 4 68-81 6, 7 120 13979/5400 0.862901 962.2 3.56 
SOD 1 4 3 1 2 0.666667 791.0 2.60 
STI 4 40--43 5 1560 2107/975 0.720342 851.9 2.27 
THO 3 9-15 3 12, 24 2 0.666667 784.2 1.71 
TON 4 38-51 6 60, 120 1951/750 0.867111 1005.7 0.32 
VET 5 83-92 8, 9 3276, 6552 544799/198744 0.913737 1023.4 3.12 
VFI 2 24, 37 3 56, 112 27/16 0.5625 668.7 2.77 
VNI 7 254--283 11, 12 16432416 611375421655/227293178112 0.896603 971.0 6.33 
VSV 3 48, 55 6 60 1227/500 0.818 948.1 0.24 
WEI 2 20 4 12 425/216 0.6558 64 773.4 1.96 
-WEN 3 29, 34 3, 4 770, 2310 148/77 0.640693 755.0 1.89 
YUG 2 22, 25 4, 5 105, 420 754/315 0.797884 935.0 1.35 
ZON 4 48, 56 4 9660 328/161 0.679089 797.7 1.57 

t The structure-type code -ROG has been discredited (see IZA Structure Commission Report, 1994) and is included only for completeness. 

Tab le  4.  Results f o r  dense SiO 2 polymorphs 

Mineral S O(IT) O(PL) M TD frac. x3 = (ai) TD dec. TD10 A (%) 

Banalsite 2 12 3 12 17/6 0.9A.'!. A. A. A • 1053.0 3.56 
Coesite 2 36, 40 6 420 1363/378 1.20194 1318.5 5.10 
Cordierite 2 26, 35 5 60, 120 279/100 0.93 1058.3 1.57 
Cristobalite 1 5 3 2 5/2 0.833333 981.0 1.82 
Feldspar 2 8, 10 3 3 20/9 0.740741 874.0 2.04 
Keatite 2 34, 35 4 120 81/25 1.08 1225.7 1.82 
Milarite 2 22, 27 3 120 21/8 0.875 1004.2 0.73 
Moganite 2 8, 10 3 3 22/9 0.814815 958.3 1.72 
Paracelsian 1 8 3 5 11/5 0.733333 864.0 1.89 
Quartz 1 9 3 6 19/6 1.05556 1231.0 0.89 
Scapolite 2 31, 33 5 252 941/378 0.829806 975.0 1.62 
Tridymite 1 7 3 4 21/8 0.875 1027.0 1.52 

Very of ten,  the pa ramete rs  a and  b are the same  for  
all va lues  o f  k or  show a m u c h  shor ter  pe r iod  than c. 
A n  example  is AFY:  for  site T1, b = 0 for  all k, for  
a t om T2,  b has pe r iod  3 wi th  the va lues  1 / 6 , -  1 /6 ,  0, 
respec t ive ly ,  wh i l e  c has a pe r iod  o f  30 if  k is odd  and 
60 if  k is even.  In  the examples  m e n t i o n e d  so far, e i ther  
b i tself  or  the s u m  of  the b ' s  ove r  the per iod  is zero.  

This  is not  the case  for  e i ther  a tom of  milar i te :  all 
va lues  o f  b are negat ive .  

10.1. TD as topological invariant 

In  those  cases  w h e r e  the pa r ame te r  a is no t  the s ame  
for  all va lues  o f  k but  is per iodic ,  T D  = (a i ) /N  o [(2)] 
is the same  for  all a toms in a f r a m e w o r k .  A c h e c k  
wi th  t w o - d i m e n s i o n a l  nets  s h o w e d  that  (after  a cer ta in  
n u m b e r  o f  spheres)  it is even  the s ame  i f  any  c lus te r  is 
chosen  as a ' s tar t ing po in t ' .  There fore ,  for  all s t ructures  
cons ide red  in this work ,  the C S ' s  have  been  c o m p u t e d  
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Table 5. Results for selected non-tetrahedral structures 
Formula S O(IT) O(PL) M TD frac. x3 = (ai) TD dec. TD10 A (%) 

CaF 2 (2) 2 7 3 2 15/4 1.25 1487.7 2.97 
CaF 2 (1) 2 8, 10 3 3, 6 80/9 2.96296 3410.3 0.38 
NaC1 1 4 3 1 4 1.33333 1561.0 1.30 
FeS2-Mar 2 10. 16 4 6, 12 47/12 1.30556 1523.7 0.98 
FeS2-Pyr 2 7, 13 3 2, 4 9/2 1.5 1716.3 0.99 
NiAs (2) 2 5, 7 3 2, 4 9/2 1.5 1748.0 0.84 
NiAs (1) 2 4, 6 3 1, 2 6 2 2325.0 0.61 
Cu 1 4 3 1 10 3.33333 3871.0 0.52 
Mg 1 5 3 2 21/2 3.5 4061.0 0.43 
W (2) 1 4 3 1 12 4 4641.0 0.43 
W (1) 1 4 3 1 6 2 2331.0 0.87 
ot-Nd 2 5, 7 3 2, 4 21/2 3.5 4058.0 0.36 
Ni2In 2 7 3 6 11 3.66667 4251.0 0.35 
ot-Mn 4 95, 102 6 1 7 1 6 0  1562201/102960 5.05763 5354.5 8.36 
Cr3Si 2 15, 17 3, 4 12 187/12 5.19444 5579.5 7.02 
a-CrFe 5 162-184 11 6846840 1829724773/112972860 5.39871 5609.5 10.06 
MgZn 2 3 38, 52 5, 6 315, 630 3978/245 5.41224 5704.3 8.76 
MgCu 2 2 18, 19 6 12 2371/144 5.48843 5788.3 8.71 
MgNi 2 5 61-83 7-9 210, 840 123787/7350 5.61392 5800.7 10.55 

and analyzed with all sites in the unit cell as starting 
cluster. In any case, the resulting TD was equal to 
the TD when starting with only one atom. Thus, we 
conclude that TD is actually a topological  invariant of  
a framework {in general, the parameters a, b, c and M 
[(1)] are not}, comparable to the cycle classes introduced 
by Beukemann & Klee (1994). 

10.2. Correlation of TD and TDIO 
The Atlas of Zeolite Structure Types (1992, 1996) lists 

a quantity called the ' topological  density '  denoted by 
TD10. This is defined to be the average number  of  
nodes (atom sites) in a cluster of  topological radius 10, 
weighted by the multiplicities mj of the s sites: 

TDIO-- [ ~ - ~ m j ( 1 W ~ N k j ) ] / ~ m  j. (7) 
j=l  k=l j=l  

Use of  (3) (TD is the same for all sites of  a structure) 
leads to 

TD10 "2_ [j=~ mj(l + k~=l(TDND)k2) ] / j=~ m j 

10 
= 1 +(TDND) ~ , k  2 

k = l  

= 1 + 385(TDND) 

and hence 

TD ___ ( T D 1 0 -  1)/385N d = TD10norm. (8) 

The rightmost columns of  Tables 3-5  [.4 (%)] list the 
percentage deviations of  TD10norm from the exact TD. 
Fig. 6 is a histogram of  the distribution of  the deviations. 
For the majority of  the structures, the deviation is well 
below 3% but there are also some outliers. A deviation 

of  more than 5% was found for -CHI and -CLO, two 
interrupted frameworks, for FAU, and for six of  the 
non-tetrahedral structures. These three zeolites represent 
relatively open and /o r  complex structures and one might 
conclude that more than ten steps are necessary in such 
cases in order to achieve a satisfactory convergence,  but 
on the other hand very complex structures like PAU 
and MFI show a very good correlation between the 
exact topological density and TD10. In view of  this, the 
additional effort necessary to obtain the exact TD seems 
justified, and previous work based on approximations to 
the exact value should perhaps be reconsidered. 

10.3. Consequences for the definition of the 
coordination sphere 

The choice of  the bond length (Table 2) determines 
the network and is a constant matter of debate. The 
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Fig. 6. Histogram of TD/TD10 correlation (see Tables 3-5). 
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quantities TD and TD10, which reflect long-range prop- 
erties of the framework, may help in choosing a sensible 
specification for the local environment. As an example, 
the 8-coordinated network of tungsten [W(1) in Tables 
2 and 5] leads to strange values for the densities, while 
the 14-connected network has densities that fit in the list 
of metallic structures. The 14-connected network admits 
the second-longest bonds, which are only 15% longer. 
A similar geometric situation exists in C a F  2 but now 
the second-nearest (also 15% more distant) neighbors 
of fluorine should not be admitted. They would lead 
to values for the densities that differ considerably from 
those of metals, whereas the lower coordination with 
only four neighbors brings CaF 2 (2) in the vicinity of 
NaC1, and again related structures stand together. 

11. Some special n-dimensional periodic graphs 

The coordination sequence of an n-dimensional graph or 
net (cf. Wells, 1977) necessarily has O(PL) > n. 

In one dimension, the simplest periodic graph is a 
linear chain, for which the CS is 1, 2, 2 . . . . .  w i th /T  = 
{ 1, 1 }, PL = { 1 }. In two dimensions, the hexagonal net 
63 (which occurs for example in the mineral biotite) 
has the CS 1, 3, 6, 9, 12, 15 . . . . .  with IT  = { 1,1, 1 }, 
PL = { 1,1 }. In three dimensions, as already mentioned, 
sodalite has 1T = {1,1,1,1},  PL = {1,1,1}. In a 
sense, these are the simplest coordination sequences in 
dimensions 1, 2 and 3. 

O'Keeffe (1991b) has generalized these three 
structures to higher dimensions, defining 'n-dimensional 
sodalites' for all n. He also gives their coordination 
sequences for n < 6. The generating functions of 
these sequences have been analyzed and were found 
to continue the pattern of the first three: the set IT  
consists of n 4- 1 l ' s  and PL of n l 's .  It is reasonable to 
conjecture that this holds in general. In a forthcoming 
paper (Conway & Sloane, 1996), it will be shown 
that this conjecture is equivalent to the assertion that 
the points in or on the kth coordination shell of 
n-dimensional sodalite are in one-to-one correspondence 
with the n-dimensional 'centered tetrahedral' numbers. 

12. Conclusions 

The main objectives of this work were to obtain (i) 
an exact definition and numerical values for topological 
densities, which can be used to investigate correlations 
with other properties of the crystal structures, and (ii) 
a better understanding of coordination sequences, since 
these are now frequently used to characterize struc- 
tures [see, for example, the novel structure-determination 
technique in Grosse-Kunstleve (1996)]. Regarding this 
aim, we consider our work to be fully successful. We 
have developed a recursive decomposition for the fast 

and efficient calculation of an arbitrary number of CS 
terms and have computed exact numerical values for 
the topological density, which is an invariant of all the 
structures investigated. 

However, the results are empirical, as there is no 
rigorous mathematical proof that a generating function of 
the form (5) must hold for the CS of a periodic structure. 
The applicability of (5) has been verified for certain 
one-, two- and three-dimensional periodic topologies. In 
the case of one and two dimensions, the justification 
is straightforward but already in three dimensions there 
are difficulties. This is a relatively minor point. Once 
the generating function has been discovered, watching 
its Taylor-series expansion match the CS for hundreds 
or even thousands of terms carries complete conviction! 

Another unresolved question concerns the conditions 
under which the special numerical properties of the 
quadratic equations hold. 

The help of Uwe Hollerbach at Boston University in 
running the period search for the coordination sequences 
of EUO and MFI is very much appreciated. 
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